
1

Generating low-poly abstractions

Crystal J. Qian ’17, David Dobkin (Advisor)

Princeton University, 2016

Abstract

Polygonal renderings approximate graphics and figures for purposes such as 3D modeling and

2D object detection. Techniques in rendering polygonal meshes, if implemented with an

interface for artistic manipulation, can vastly improve current “low-poly” art generation

techniques. We introduce an algorithmic approach to 2D mesh generation as well as a tool for

interaction with resultant meshes for the purpose of creating art.

Figure 1: Results of our proposed algorithm on a selection of images.

2

1. Introduction

Polygonal approximations are used in 3D

modelling to increase frame rates and in

computer vision for object detection; in the

field of art, “low-poly” image renderings

have become a popular form of abstraction.

Tools exist for alternate forms of image

representation; popular software includes

Adobe Photoshop for pixel-based

representations and Adobe Illustrator for

vector-based representations. However, there

are few effective tools for artists to work with

polygonal representations and quickly

prototype "low-poly" renderings. We

introduce the following algorithm and

software as a proof of concept for such a tool.

2. Related Work

Manual approaches: The widely-accepted

industry standard for low-poly art generation

is a combination of Adobe Suite tools

(Photoshop, Illustrator).

Artists using this method triangulate a

reference image by hand in Photoshop, then

use pen tools in Illustrator to construct a mesh

from the triangulation. The mesh is colored

by using the eyedropper tool to manually

select colors at the approximate center of

each face.

Figure 2: A step in B. Bitencourt’s tutorial

on manual low-poly rendering.

However, this process is extremely time-

consuming. In fig. 2, the artist spent over four

hours prototyping one image. Although

Bitencourt emphasizes the importance of

creating low-poly art by hand as "[the] brain

is better than any script or automated process

at determining the contours of the face," [1]

we suggest that a well-designed system that

effectively automates triangulations and

allows for artistic direction will vastly speed

up and improve the generative process.

Automated approaches: There exists a

program, “Triangulation Image Generator,”

that generate static (non-editable)

triangulations from images. While resultant

meshes can be visually pleasing for certain

input images, the lack of user control over the

triangulations makes the program ineffective

as an editing tool. Snorpey’s “Triangulation,”

[15] allows for user-controlled

parametrization, but doesn’t allow for

manual editing.

Figure 3: A resultant mesh. [2]

DMesh, a dynamic mesh editor, has the

critical feature of allowing manual point

editing on existing meshes.

3

However, the computer vision-based auto

point generation algorithm could be

improved.

Figure 4: A demonstration of dynamic mesh

density control in D. Yun’s “DMesh”

program. [3]

Research: Current approaches in rendering

low-poly meshes for the sake of art have not

applied techniques from existing research on

constructing meshes out of images for the

purpose of object detection and data

acquisition [4, 5]; we combine these

techniques with methods in adaptive image

approximation [6] and edge detection [7, 8,

9] to generate meshes from input images.

3. Problem/Approach

Existing software for artists to create

geometric abstractions are too time-

consuming and labor intensive. Although

user control is critical for creating pleasing

aesthetic output, developing an effective

image triangulation algorithm would greatly

speed up and improve the mesh prototyping

process. While programs have been written to

solve the image triangulation problem, the

lack of user control or weakness of the

triangulation algorithm renders them

unsuccessful as a means to create visually

pleasing meshes.

Our goal is to build a polygonal

representation editor tool, which should

render aesthetically-pleasing polygonal

abstractions, allow for users to refine

parameters used in algorithmic low-poly

generation, and permit manual editing of

resultant triangulations.

Figure 5: Expected user-interaction with

our proposed tool.

To create such a tool, we need to develop an

algorithm for parameterized low-poly

triangulation (which should be an

improvement on existing algorithms), and

produce an interface for manual interaction.

4. Implementation

Parametrization: The following are user-

defined parameters used in our algorithm.

Figure 6: A screenshot of our interface for

parameter adjustment.

4

The user can adjust the values either by using

the GUI provided or through a “batch mode”

through the webpage URL. The interface

portion was inspired by another project with

parameterized image filtering. [15]

 Image path: the location of the image

within the directory

 Sample frequency (𝜎): a value used

in our initial edge convolution.

 Blur (b): Preprocessed blur value.

 Rate (r): Percentage of vertices/total

pixel count we want in the output.

 Points (n): A cap on the maximum

number of vertices desired.

 Edge threshold (E): Minimal

strength of potential vertices.

Algorithm: Our algorithm must yield

aesthetically pleasing approximations. That

is, the mesh should preserve key points and

edges while keeping redundancies (clustering

around key points) at a minimum.

Also, users should be able to interact with

parameters of this algorithm in real-time, so

rendering meshes from images should be

almost instantaneous.

Our current algorithm follows this sequence:

1. Image preprocessing

2. Node detection

3. Triangulation

4. Rendering

Figure 7: An initial case.

Preprocessing: Rather than determine the

triangulation by sampling points from the

base image, we sample points from a

"preprocessed" image, where redundancies

are removed and edges are highlighted.

“Detection of edges in an image is a very

important step towards understanding image

features. Edges consist of meaningful

features and contain significant information.

It… filters out information that may be

regarded as less relevant, thus preserving the

important structural properties of an image.

Most images contain some amount of

redundancies that can sometimes be removed

when edges are detected….” [10]

We want to preserve significant information

in our abstraction, so we filter the image to

clearly detect edges. We implement a liberal

interpretation of Canny edge detection as we

hope to preserve good detection, good

localization, and minimal response. [9]

However, this implementation must perform

faster than Canny edge detection.

First, we use grayscale data to more correctly

gauge values of each pixel, as “edges

typically correspond to points in the image

where the gray value changes significantly

from one pixel to the next.” [7] For each pixel

with RGB values (r, g, b), we get the

luminosity l and set the new RBG to (l, l, l).

𝑙 = .21𝑟 + .72𝑔 + .07𝑏

Figure 8: Image data after grayscale effect.

5

We blur the image with a box-blur

implementation whose speed is independent

of radius (user-defined parameter b). We get

linear-traversal, which is must faster than

rendering with the Gaussian blur proposed in

Canny edge detection.

We calculate horizontal blur ℎ𝑖,𝑗 for each

pixel at 𝑖, 𝑗 by sampling pixel values within b,

where 𝑓𝑖,𝑥 is the pixel value at that point.

ℎ𝑖,𝑗 = ∑
𝑓𝑖,𝑥

2𝑏

𝑖+𝑏

𝑥=𝑖−𝑏

These horizontal blurs are interpolated with

values of vertical neighbors to get the

resultant total blur, 𝑡𝑖,𝑗.

𝑡𝑖,𝑗 = ∑
ℎ𝑖,𝑗

2𝑟

𝑗+𝑟

𝑦=𝑗−𝑟

Figure 9: Blurred convolution with b=3.

Figure 10: Blurred convolution with b=10.

We then convolute each pixel with a filter to

perform a localized edge detection. The result

yields a pixel value 𝑒𝑖,𝑗 for each pixel at 𝑖, 𝑗.

[
+1 +1 +1
+1 −8 +1
+1 +1 +1

]

It is worth exploring the effects of various

edge detection operators on the resultant

triangulation. However, since we continue

filtering the image and ultimately remove

edge representations anyway to render an

abstraction, we only need a rough

approximation. This technique is fast and

simple.

We allow for varying degrees of non-

maximum suppression (dependent on user-

defined parameter 𝜎) to suppress gradient

values under 𝜎 and thin/filter our detected

edges to a desired result.

Figure 11: Edge detection with 𝜎 = 2

Figure 12: Edge detection with 𝜎 = 10

6

Node detection: We perform our node

detection on the resultant data after

preprocessing to get nodes to triangulate.

First, we calculate the edge density for each

pixel of the image by sampling a 3x3 window

with our desired pixel at the center.

Because the image data itself has been edge

detected, the edge density d for each pixel at

(i, j) is simply the average of the pixel values

in each window. [12]

𝑑𝑖,𝑗 =
1

9
∑ ∑ 𝑒𝑖,𝑗

𝑦=𝑗+1

𝑦=𝑗−1

𝑖+1

𝑥=𝑖−1

We check if 𝑑𝑖,𝑗 > 𝐸, the user-defined edge

threshold parameter. If so, we add the pixel

to a list of candidate points 𝐿.

Ultimately, we desire to have no more than p

nodes in our triangulation, where

𝑝 = min (𝑛, 𝑟 × 𝑤 × ℎ)

𝑛 and 𝑟 are the user-defined parameters for

points and rate, and 𝑤 and ℎ are the width and

height of the image, respectively.

We randomly select p nodes out of our

candidate points list 𝐿 for our node list.

Triangulation: We define a triangulation Τ

of our image domain Ω as a finite set {𝑇}𝑇∈Τ

of closed triangles 𝑇 ∈ ℝ2 such that the

union of triangles in Τ covers Ω entirely.

Ω = ⋃ 𝑇

𝑇∈Τ

Also, the intersection of the interiors of any

two distinct triangles 𝑇, 𝑇′ ∈ Τ must be

empty. [6]

For 𝑇 ≠ 𝑇′,

�̇� ∩ �̇�′ = ∅

Because we want our triangulation to be

made out of individual polygons, we desire

our triangulation to be conforming; which

holds “if any pair of two distinct triangles in

Τ intersect at most at one common vertex or

along one common edge.” [6]

Figure 13: a non-conforming triangulation

(left); a conforming triangulation (right). [6]

A Delaunay triangulation satisfies this

property and avoids constructing long, thin

triangles which would be less aesthetically

pleasing.

So, we render a Delaunay triangulation 𝐷

[14] of the nodes previously selected, where

𝐷 is a conforming triangulation of Ω such that

for any triangle in 𝐷, its circumcircle does not

contain any vertex from 𝐷 in its interior. [6]

Rendering: We use d3.js [13] and JavaScript

for displaying resultant meshes in browser.

d3.js has built-in methods for user-interaction

with nodes and links, allowing for simple

manual mesh editing.

Specifically, we allow the user to be able to

add/remove/drag around vertices. When a

vertex is dragged outside the boundaries of its

neighboring triangles, the vertices are

triangulated once again.

Because we need to quickly and dynamically

compute the color of each triangle with user

interactions, we sample each triangle at its

center of gravity rather than average all pixel

values to determine triangle color.

7

For a triangle with vertices 𝑎, 𝑏, 𝑐, the center

of gravity 𝑥, 𝑦 is located at

𝑥 =
𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥

3

𝑦 =
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑦

3

Output: After an image is loaded,

preprocessed, and triangulated, the output

mesh will look similar to this.

Figure 14: Result with n = 1700.

Figure 15: Result with n = 2200.

Does preprocessing improve the aesthetic of

the triangulation? More points were added to

the mesh to preserve important features in

key structures; this is most likely due to the

increased noise in the image as a result of not

blurring. Whether this is more or less

aesthetically pleasing is subjective.

Figure 16: No preprocessing.

In node detection, we randomly sampled p

points above the edge threshold. Would

taking the p points with the highest edge

densities yield a more beautiful result?

Figure 17: Result with n = 1700; points with

highest edge densities selected, rather than

random selection of points above a threshold.

Not necessarily. While the results were

largely similar, the “best” point approach

resulted in more clustering (not clearly

shown in the above image). The random

sampling approach yields a much cleaner

distribution.

5 Evaluation/Results

While our tool does indeed render polygonal

abstractions of images, the metric of whether

they are “aesthetically pleasing” is purely

subjective.

8

The following experiment aims to determine

1) if the meshes were aesthetically pleasing

to a fair sample size, and 2) if preprocessing

improved the aesthetic.

Experiment: I sampled twenty subjects,

most with academic backgrounds in visual

arts or computer science.

I surveyed these subjects twice about three

photos. The first time, images were not

preprocessed. The second time, images were

preprocessed, and the algorithm was refined

to address other complaints in the first trial.

These test images were not manually edited.

Each subject was shown the original, then the

rendering of each image, and asked to give

their initial opinions (positive, negative,

neutral) and comments on the quality of the

triangulation.

City case:

Figure 18: City case.

We chose this image due to the varying noise.

Figure 19: City v. 1.

Figure 20: Reactions to city, v. 1.

Reactions to the initial rendering were mostly

positive. However, 15% of subjects did not

like how small features in the original image

(like the water next to the tower) were lost in

the abstraction.

Figure 21: City v. 2.

This was the final rendering that was

presented to the subjects.

40% of the subjects liked the disparity in the

triangle sizes between the city and the sky.

“Selective preservation of hard edges in the

original images and the more ‘artistic’ (less

uniform) sizing of the triangles make these

better, I think.”

– Subject #2

However, 60% of the subjects disliked the

larger panels in the background.

“I didn't like the big triangles. I much

preferred the finely done sky.”

 – Subject #5

Positive
60%

Neutral
5%

Negative
35%

9

Figure 22: How did city v.2 compare to v.1?

As people preferred v.1 over v.2, we should

offer the option of disabling preprocessing

for certain images.

Chessboard case:

Figure 23: Chessboard case.

The "chessboard" case was selected due to its

distinctive piece shapes and strong edges.

Figure 24: Chessboard v. 1.

Figure 25: Reactions to chessboard, v.1.

Some liked the jagged edges on the board and

the rough abstractions of the pieces.

 “I like the jagged lines; it makes the image

more interesting, even thought provoking

(you expected the grid to be straight lines).”

- Subject #1

Others argued that the jaggedness of the

representation was not accurate and therefore

displeasing.

“It kind of bothers me that the chess board

looks all chipped up. The chess board is

supposed to be neat and square.”

- Subject #8

30% of responders used a variant of the word

“blurry” to describe the effect; this case in

particular benefits from edge detection.

Figure 24: Chessboard v. 2.

0

2

4

6

8

Better Worse Equivalent

Positive
50%Neutral

45%

Negative
5%

10

Responses to this version were much more

positive, with 90% of participants giving the

opinion that this chessboard was much better

rendered than the original.

“I liked the chessboard because I could make

out the details of the individual pieces

significantly more.”

– Subject #15

“The lines of the chessboard are really clean

so it doesn’t look like a fuzzy picture

anymore, which is awesome!!”

- Subject #4

Figure 26: How did chessboard v.2 compare

to v.1?

The preprocessing and edge convolution

made the chessboard case more aesthetically

successful, according to the sample.

Portrait case: The portrait was chosen as

subjects tend to respond more strongly to

human features. Also, the portrait was a bit

blurry.

Figure 27: Portrait case.

Figure 28: Portrait v. 1

Figure 29: Reactions to portrait, v1.

Many people didn’t like the lack of feature

detection on the face.

“I can still see that it is human, even

[Crystal]. But I, as a person, know the

important features on a face are around the

lips, nose, and eyes. I think there’s not

enough detail around there, and a lot on the

hair. etc.”

- Subject #2

Items in the background (shelves, stuffed

animal) were abstracted beyond recognition

in the triangulations. Some people responded

positively to this abstraction.

“The stuffed animal/mascot to the left and the

shelves it sits on become pleasantly abstract.

Like, you see an orange thing and have to

guess at what it could be. The items off to the

sides just add interest and fill out the

background, but knowing what they are isn't

critical to the appreciation of the image.”

- Subject #17

0

2

4

6

8

10

Better Worse Equivalent

Positive
50%Neutral

45%

Negative
5%

11

Others didn’t like this abstraction and

recommended removal of the portions

altogether from the image.

“The tiger in the back looks like a hand... and

so does the sign on your door.... Rendering

makes things unrecognizable. I feel like

every blob should represent something if it's

going to end up in the final [picture], or else

it's kind of confusing. “

- Subject #6

“The background is busy, so stuff isn't really

recognizable as triangles. It could be less

blurred, or you could take a picture with a

simpler background.”

- Subject #2

Figure 30: Chessboard, v.2.

Most subjects liked how the new approach to

handling the human face.

However, some did not like that abstract

objects in the background were no longer left

to the imagination. Now that the items had a

form, the background was more distracting.

“While the face is slightly more distorted, the

background is more distracting in this

version.”

- Subject #3

“[I don’t like this as much], because the door

sign on the old [portrait case] looks like it

could have been a cat perched on the back of

your chair. [It’s less ambiguous now.]”

- Subject #14

Figure 31: How did portrait v. 2 compare to

v.1?

Overall feedback: Most subjects responded

positively to the raw triangulations.

“The macroscopic structures are well-

maintained.”

- Subject #19

“The triangulated image gives a good

impression of the larger shapes in the image

as a whole, but the finer details are lost.”

- Subject #2

On the comparison of the two versions:

“If I look back at the previous versions now

they look like maybe they were just blurred

with a strange triangle shaped blurring, but

this wave gives me the impression that the

source images have been "reinterpreted"

more than just blurred.”

- Subject # 15

Figure 32: Overall results of our experiment.

Reactions were mostly positive.

0

2

4

6

Better Worse Equivalent

0 5 10 15

City

Chessboard

Portrait

Negative Neutral Positive

12

The survey yielded two conclusions:

1) While preprocessing most often

improves the overall aesthetic of the

rendering, blurring and triangulation

along edges doesn’t always yield the

most aesthetic result.

2) Overall, our algorithm by itself

renders generally aesthetically

pleasing results (as determined by

popular consensus during our

sampling.)

Comparative Evaluation: We also wanted

to compare results to existing tools

previously mentioned.

We compare across the Photoshop standard.

Our algorithm used more points and didn’t

replace the background, but generated a fast

prototype in less than .04% of the time it took

Bitencourt to render his abstraction. With the

user’s ability to delete nodes on the rendered

mesh, reducing details in desired areas should

be an easy task. Additionally, our rendering

didn’t blank out the background. This

shouldn’t be too difficult to do manually.

Figure 31: Manual rendering.

Figure 32: Our result.

To test across algorithmic standards, I

plugged a few images into A. Hamamuro’s

“Triangulation Image Generator”.

While many cases looked comparatively

similar (as his approach also performs some

kind of preprocessing before triangulation),

some cases stood out that highlighted the

importance of allowing for user input. Again,

no manual editing of the mesh was done to

our output, but parameters were determined

by the author.

Figure 33: Parents case.

13

Figure 34: “Triangulation Generator”

output.

Figure 35: Our output.

Reflection: Our tool allows for much faster

prototyping of polygonal meshes than

existing tools. Additionally, we improved

upon a current preprocessing and

triangulation algorithm [2, Fig. 34, Fig. 35];

while this is a subjective statement, I believe

that our algorithm approximates fine details

much better. A survey could be done with the

results of the two renderings to confirm this.

Algorithmic results and limitations: We

now show some outputs of the algorithm

(with parameters specified by the author) and

discuss the outputs’ aesthetic qualities and

limitations.

Figure 36: IBM case.

Figure 37: Our result.

The two figures looking into the data center

are still prominent, despite their shapes

having similar luminosity and shape to the

objects inside the building. Also, the letters in

IBM are clearly displayed.

Figure 38: Paris case.

14

Figure 39: Our result.

This photo is similar to the city case from our

experiment. Sections behind the tower

maintained (the city, buildings in fog, and

sky), but the buildings become

undecipherable and the clouds in our

rendering could easily be mountains. The

rounded edges of the clouds lose their

distinctive shape; perhaps we should not have

preprocessed to edge detect in this case.

However, the tower is very well shown,

perhaps due to the nice contrast with the fog.

The next photo, Reflection, is already a low

poly rendering. As expected, our

implementation works well on images with

clear edges already defined. The lack of noise

eliminates strange shapes, and our result

looks almost the same as the original.

Figure 40: Mountain case.

Figure 41: Our result.

Figure 42: New York City case.

Figure 43: Our result.

This photo is unlike the previous in that there

is a lot of noise, particularly on the island.

Our implementation does not resolve these

lights well; or, we’d need more polygons.

15

Figure 44: Girl with the Pearl Earring, Vermeer (left), our result with n = 1200 (center), our

result with n = 2000 (right).

Our result renders the features in the face well; the nose, lips, eyes, and facial structure are distinct.

This benefits from the large contrasts in the painting and the clear lines. With the portrait in our

test case, perhaps the blurred photo made edge detection weak. In my interpretation, the different

triangulations from varying point values changes her expression in each rendering.

Assessment: Overall, the algorithm preserves features in images well, particularly when edges are

clearly defined or areas have high contrast. However, areas with lots of noise will lose distinctive

features if we use few points in the detection. Whether this is a limitation is subjective.

6 Conclusions

To recap, we developed an algorithm for

generating low-poly abstractions from

images. The generated abstractions are,

overall, regarded as visually pleasing.

We also built a tool that incorporates the fast

prototyping of algorithm-based meshes with

the aesthetic refinement of the user.

Thus far, most tools for creating art depend

entirely on the artist’s discretion. If rendering

an abstraction of an image, the artist must

subjectively determine which parts of the

image are important, and which are not.

The magnitude of labor behind creating low-

poly art is commendable. When we see a low-

poly rendering, we recognize not only the

aesthetic structure of the graphic, but also the

labor of the artist, who had to render each

individual triangle.

With our contribution, such labor has been

greatly reduced. This tool encourages the

idea of the user and computer working

together to generate art. The computer in this

case is not just a tool, but also a collaborator.

Additionally, by simplifying the process of

generation, we hope to reduce the barriers of

entry to the field of low-poly art, provide an

easier approach to a challenging and

laborious process, and encourage more artists

to explore polygonal representation as a basis

for aesthetic ingenuity.

16

7 Future work

The algorithmic approach is adequate for

most cases, but struggles with maintaining

structures in areas with loud noise (for

example, the bottom part of the city example

or the New York City rendering). Currently,

we have to make a tradeoff between allowing

very dense meshes in those areas or risking

an unrecognizable rendering. This is not

necessarily a limitation, but is something

worth investigating in more detail. If a

graphic designer was given the New York

photo or any photo with much noise (for

example, snow caps or grass), how would

he/she produce a low-poly rendering? While

our tool does allow an artist to produce an

aesthetically-pleasing result with any image,

in the worst case completely with manual

labor, studying this specific case and

adjusting the algorithm to account for loud

noise could make our tool even better.

Additionally, there are still features to be

implemented in order to create a robust

polygonal mesh-editing tool; a feature that

could address feedback in the survey is a

“layered” feature. Like “layer” features in

other editing systems, users could select

regions of the mesh to refine or edit rather

than have our algorithm be applied to the

entire mesh on each iteration. This would

allow the user to, for example, throw the

background of the City image into a layer and

increase the number of polygons in that

region if he/she did not find that particular

section visually pleasing.

We’ve begun experimenting with wrapping

meshes around surfaces and bringing 2D

meshes into a 3D space, to further explore the

aesthetic of “low-poly” art in a space that

would be even more difficult to explore

manually.

Figure 45: Wrapping a planar mesh around

a cylinder

Figure 46: Crumpling a planar mesh

We hope that continuing this work in the

space of geometric abstraction will yield

more visually interesting results, and that this

tool will allow more art enthusiasts to join

us in this exploration, which is why we’re

producing a version to release.

8 Honor Statement

I pledge my honor that this paper represents my own work in accordance with University

regulations.

Crystal Qian, 4/29/2016

17

References

Images (and citations), renderings, and supplemental renderings can be viewed in greater detail

here: http://imgur.com/a/gMAWZ

[1] B. Bitencourt. (2014) Low-poly self portrait tutorial. Available:

https://www.behance.net/gallery/16579635/ low-poly-self-portrait-tutorial

[2] A. Hamamuro. (2012) Triangulation image generator. Available: http://jsdo.it/akm2/xoYx

[3] D. Y. Yun. (2012) Dmesh. Available: dmesh.thedofl.com

[4] G. P. Fickel et al., “Stereo matching and view interpolation based on image domain

triangulation,” in IEEE Transactions on Image Processing, Vo. 22, No. 9, 2013.

[5] Y. Tao and W. I. Grosky, “Delaunay triangulation for image object indexing: a novel

method for shape representation,” in In Proceedings of the Seventh Spie Symposium on

Storage and Retreival for Image and Video Databases, 1999.

[6] L. Demaret and A. Iske, “Anisotropic triangulation methods in adaptive image

approximation,” in Approximation Algorithms for Complex Systems, 2010.

[7] O. Vincent and O. Folorunso, “A descriptive algorithm for sobel image edge detection,”

in Proceedings of Informing Science and IT Education Conference, 2009.

[8] T. P. Sahu and Y. K. Jain, “Improved simplified novel method for edge detection in

grayscale images using adaptive thresholding,” in Journal of Advances in Computer

Networks, Vol. 3, No. 2, June 2015.

[9] R. Maini and D. H. Aggarwal, “Study and comparison of various image edge detection

techniques,” in International Journal of Image Processing (IJIP), March 2009.

[10] D. Ray, “Edge detection in digital image processing,” Rice University, 2013.

[11] M. Klingemann. (2016) Superfast Blur Algorithm, Available:

http://incubator.quasimondo.com/processing/superfast_blur.php

 [12] S. L. Phung and A. Bouzerdoum, “Detecting People in Images: An Edge Density

Approach” in IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), 2007.

[13] M. Bostock. (2013) Data Driven Documents, Available: https://github.com/mbostock/d3

[14] J. T. L. (2014) Fast Delaunay Triangulation in Javascript, Available:

https://github.com/ironwallaby/delaunay

[15] G. Fischer. (2013) Triangulation, Available: https://github.com/snorpey/triangulation

http://jsdo.it/akm2/xoYx
http://incubator.quasimondo.com/processing/superfast_blur.php
https://github.com/ironwallaby/delaunay

